Advantages:
· One-step process to produce double emulsion core droplets
· Novel structure has advantages of both fibers and droplets
· Allows for either simultaneous or sequential delivery of multiple materials
· Produces ordered composites as opposed to random dispersion of the particles in bulk polymer
Inventors
Howard Stone is the Donald R. Dixon '69 and Elizabeth W. Dixon Professor in Mechanical and Aerospace Engineering at Princeton University. His research has been concerned with a variety of fundamental problems in fluid motions dominated by viscosity, so-called low Reynolds number flows, and has frequently featured a combination of theory, computer simulation and modeling, and experiments to provide a quantitative understanding of the flow phenomenon under investigation. Professor Stone is the recipient of the most prestigious fluid mechanics prize, the Batchelor Prize 2008, for the best research in fluid mechanics in the last ten years. He is also a Fellow of the American Academy of Arts and Sciences and is a member of the National Academy of Engineering and the National Academy of Sciences.
Janine Nunes is an Associate Research Scholar in Professor Howard A. Stone's research group in the Mechanical and Aerospace Engineering Department at Princeton University. She earned her PhD in chemistry from the University of North Carolina, at Chapel Hill, in the area of polymer particle synthesis and lithography. Her current research interests are in the use of multiphase microfluidics to template precursor liquid phases for the controlled fabrication of novel micro-objects, such as microfibers and core-shell/hollow microspheres.
Eujin Um is a Postdoctoral Research Associate in Professor Howard Stone's group in the Mechanical and Aerospace Engineering Department at Princeton University. She obtained her BS in Mechanical Engineering from Seoul National University and her MS and PhD in Bioengineering at KAIST, Korea. Her research interests include designing a microfluidic platform that can provide a new way of conducting biological studies that are not possible with conventional tools or methods. Her work has been primarily focused on two-phase microfluidics and the control of droplet movement for encapsulation and screening of cell-based reactions. She also investigates various soft matter research questions and fabrication of the novel microstructures using microfluidics.
Tamara Pico is a 1st year PhD student in Applied Physics at Harvard University. She graduated Princeton with an A.B. in Chemistry in 2014, completing her senior thesis in Howard Stone's lab. Her thesis was titled "Microcompartmentalized Fibers for the Encapsulation and Release of Model Compounds."
Intellectual Property Status
Patent protection is pending.
Princeton is seeking to identify appropriate partners for the further development and commercialization of this technology.
Contact
Michael Tyerech
Princeton University Office of Technology Licensing • (609) 258-6762• tyerech@princeton.edu
Laurie Bagley
Princeton University Office of Technology Licensing • (609) 258-5579• lbagley@princeton.edu